Al matrix composites reinforced by in situ synthesized graphene–Cu hybrid layers: interface control by spark plasma sintering conditions
نویسندگان
چکیده
Tremendous impacts are usually made by the synthesis method and consolidation technique on microstructure interface of graphene/Al composites. In present work, an in situ gel-precursor decomposition route is proposed for one-step graphene nanosheet (GNS) decorated with Cu nanoparticles form hybrid layers encapsulating Al grains (designated as GNS–Cu/Al). Consolidation performed spark plasma sintering (SPS) using markedly different sets maximum temperature uniaxial pressure (400 °C/400 MPa or 500 °C/100 MPa). The powder dense samples investigated several techniques including thermal analysis, X-ray diffraction electron microscopy. microhardness elastic modulus selected GNS–Cu/Al composites related to preparation conditions. Results demonstrate that structure primarily determined roles GNS–Cu finely controlled SPS This work paves a novel way elucidate evolutions metal-decorated hybrids matrix
منابع مشابه
IN SITU FABRICATION OF Al 2024-Mg2Si COMPOSITE BY SPARK PLASMA SINTERING OF REACTIVE MECHANICALLY ALLOYED POWDER
In situ Al2024- Mg2Si composite was fabricated by spark plasma sintering (SPS) of reactive powder. Reactive powder was obtained from mechanical alloying (MA) of elemental powders. Clad layers of in situ composite were fabricated on Al substrates by spark plasma sintering (SPS). Structural evolution during MA process and after SPS was investigated by X-ray diffractometery (XRD). Scanning electro...
متن کاملIn-situ Fabrication of Transparent Magnesium Aluminate Spinel by Spark Plasma Sintering
Transparent polycrystalline spinel ceramic was fabricated without any sintering aids by spark plasma sintering method of a mixture of Al2O3 and MgO powders for only 10min soak at 1250°C. Densification, microstructure and optical transparency of spinel were examined. The spinel exhibits an in-line transmission of 55% for a visible-wavelength of 470nm and high hardness value of 2040 HV.
متن کاملCharacterization of Multiwalled Carbon Nanotube-Reinforced Hydroxyapatite Composites Consolidated by Spark Plasma Sintering
Pure HA and 1, 3, 5, and 10 vol% multiwalled carbon nanotube- (MWNT-) reinforced hydroxyapatite (HA) were consolidated using a spark plasma sintering (SPS) technique. The relative density of pure HA increased with increasing sintering temperature, but that of the MWNT/HA composite reached almost full density at 900°C, and then decreased with further increases in sintering temperature. The relat...
متن کاملFabrication of Nanostructured Cu matrix Nanocomposites by High Energy Mechanical Milling and Spark Plasma Sintering
Spark plasma sintering (SPS) is a sintering process that is capable of sintering hard worked powders in short times. This technique was used to fabricate bulk Cu and Cu-SiC nanocomposites. Pure Cu and mixed powders of Cu including 4 vol% of SiC nanoparticles were mechanically alloyed for 25 h and sintered at 750˚C under vacuum condition by SPS method. Microstructures of the materials were chara...
متن کاملNew Mechanism for Ferroelectricity in the Perovskite Ca2-xMnxTi2O6 Synthesized by Spark Plasma Sintering.
Perovskite oxides hosting ferroelectricity are particularly important materials for modern technologies. The ferroelectric transition in the well-known oxides BaTiO3 and PbTiO3 is realized by softening of a vibration mode in the cubic perovskite structure. For most perovskite oxides, octahedral-site tilting systems are developed to accommodate the bonding mismatch due to a geometric tolerance f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Materials Science
سال: 2022
ISSN: ['1573-4803', '0022-2461']
DOI: https://doi.org/10.1007/s10853-022-07057-3